Senin, 09 Juli 2018

MARKOV

v Pengertian : 
Rantai Markov dapat dikatakan sebagai salah satu teknik matematis yang dapat digunakan untuk membuat suatu model guna memperkirakan perubahan-perubahan variabel2 dinamis di waktu yang akan datang, berdasarkan perubahan2 variabel2 dinamis tersebut pada periode sebelumnya.
  • Model Rantai Markov dikembangkan oleh seorang ahli Rusia A.A. Markov pada tahun 1896. Dalam analisis markov yang dihasilkan adalah suatu informasi probabilistik yang dapat digunakan untuk membantu pembuatan keputusan, jadi analisis ini bukan suatu teknik optimisasi melainkan suatu teknik deskriptif . Analisis Markov merupakan suatu bentuk khusus dari model probabilistik yang lebih umum yang dikenal sebagai proses Stokastik (Stochastic process).
  • Konsep dasar analisis markov adalah state dari sistem atau state transisi, sifat dari proses ini adalah apabila diketahui proses berada dalam suatu keadaan tertentu, maka peluang berkembangnya proses di masa mendatang hanya tergantung pada keadaan saat ini dan tidak tergantung pada keadaan sebelumnya, atau dengan kata lain rantai Markov adalah rangkaian proses kejadian dimana peluang bersyarat kejadian yang akan datang tergantung pada kejadian sekarang.
Jadi, Informasi yang dihasilkan tidak mutlak menjadi suatu keputusan, karena sifatnya yang hanya memberikan bantuan dalam proses pengambilan keputusan.

v Syarat-Syarat Dalam Analisa Markov
Untuk mendapatkan analisa rantai markov ke dalam suatu kasus, ada beberapa syarat  yang harus dipenuhi yaitu sebagai berikut:
1.      Jumlah probabilitas transisi untuk suatu keadaan awal dari sistem sama dengan 1
2.     Probabilitas-probabilitas tersebut berlaku untuk semua partisipan dalam sistem.
3.     Probabilitas transisi konstan sepanjang waktu.
4.     Kondisi merupakan kondisi yang independen sepanjang waktu.
Penerapan analisa markov bisa dibilang cukup terbatas karena sulit menemukan masalah yang memenuhi semua syarat yang diperlukan untuk analisa markov, terutama persyaratan bahwa probabilitas transisi harus konstan sepanjang waktu (probabilitas transisi adalah probabilitas yang terjadi dalam pergerakan perpindahan kondisi dalam sistem).

v Sifat Umum
       Proses markov memiliki beberapa sifat umum. Sifat umum dari proses Markov adalah :
1.  f(XnXn-1,……,X1) = f(XnXn-1)
2.  E{ XnXn-1,……,X1} = E{ XnXn-1}
3.  f(XnXn+1,……,Xn+k) = f(XnXn+1)
4.  Bila keadaan sekarang diketahui, masa lalu independen dengan masa
akan datang, bila k<m<n maka :
f(Xn,XkXm) = f(XnXm) f(XkXm)
v Keadaan Probabilitas Transisi
Keadaan transisi adalah perubahan dari suatu keadaan (status) ke keadaan (status) lainnya pada periode berikutnya. Keadaan transisi ini merupakan suatu proses random dan dinyatakan dalam bentuk probabilitas. Probabilitas ini dikenal sebagai probabilitas transisi. Probabilitas ini dapat digunakan untuk menentukan probabilitas keadaan atau periodeberikutnya.

v Peralatan Analisis Markov
1.      Probabilitas Tree
Probabilities tree merupakan cara yang aman dan sangat membantu untuk menunjukan sejumlah terbatas trasisi dari suatu proses Markov.
2.      Pendekatan Matriks
Ada kalanya kita harus mencari probabilitas pada periode yang sangat besar, misalkan periode hari ke-9, ke-10 dan seterusnya, akan sangat menyulitkan dan membutuhkan media penyajian yang khusus jika kita menggunakan Probabilitas Tree. Oleh karena permasalahan tersebut dapat diselesaikan dengan menggunakan metode Pendekatan Matriks Probabilitas.

v Keadaan Steady State dan Probabilitasnya
Dalam banyak kasus, proses markov akan menuju pada Steady State (keseimbangan) artinya setelah proses berjalan selama beberapa periode, probabilitas yang dihasilkan akan bernilai tetap, dan probabilitas ini dinamakan Probabilitas Steady State. Untuk mencari Probabilitas Steady State dari suatu Matriks Transisi, maka kita dapat menggunakan rumus:
( N(i+1)   M(i+1) ) = ( N(i)    M(i) ) x Matriks Probabilitas Transisi
Karena Steady State akan menghasilkan probabilitas yang sama pada periode ke depan maka rumus tersebut akan berubah menjadi:
( N(i)    M(i) )      = ( N(i)     M(i) ) x Matriks Probabilitas Transisi


Tidak ada komentar:

Posting Komentar